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Enantiospecific Synthesis of (-)-5-epi-Shikimic Acid and a New Route to (-)-Shikimic Acid
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Abstract: (-)-Shikimic acid (1) and (-)-5-epi-shikimic acid (2) have each been prepared enantiospecifically and
with high diastereoselectivity from D-ribose.

(-)-Shikimic acid (1) is a key biosynthetic intermediate which gives its name to the pathway by which the
aromatic aminoacids and a wide range of secondary metabolites are formed in living systems.l The
biochemical significance of 1 has led to much interest in its chemical synthesis,1»2 and, following an early
synthesis of the (-)-enantiomer I from D-arabinose,3 a number of other reports have appeared on the conversion
of sugars to (-)-1.4 Here we report new direct routes both to (-)-1 and to the previously unreported (-)-5-epi-
shikimic acid (2)3 from D-ribose, involving intramolecular hitrone cycloaddition (INC) reactionsS to establish
the carbocyclic ring.”
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We have previously shown that reaction of 2,3-O-isopropylidene-D-ribose (3) with diallylzinc gives the
D-allo-triol 4 (Scheme 1) with high diastereoselectivity, a result which can be rationalized by reaction either
via a Felkin-Anh transition state, or via the cyclic chelate A (R = H, Nu = allyl).? Periodate cleavage of 4 gave
58 in quantitative yield, and on treatment with MeNHOHLHCI in pyridine, nitrone 6 was isolated in 98% yield
after chromatography. Thermolysis of 6 (toluene, reflux, 18 h) gave the cycloadduct 710 (67%) with only very
minor traces of an isomer. The stercochemistry of 7 follows from 1H-nmr studies on 7 and its O-acetyl
derivative 8.10 Strong n.O.e. effects were observed for 8 between H-1 and H-6 and between H-6 and H-7a,
implying a cis-ring junction; n.O.c. effects between H-78 and H-4, together with coupling constant datal® (e.g.
for 7, J1,6 9.0 Hz, J4 50 9.5 Hz) indicate a conformation for 7 and 8 as indicated in B.11
Hydrogenation of 8 over Pearlman's catalyst gave the aminoalcohol 9 in quantitative yield, and this could be
converted (87%) to the quaternary salt 1010 by aeatment with MeI-K2CO3 in THF. When 10 was oxidized
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Scheme 1. i, diallylzinc, Btz0, 0 9C; ii, NalO4, Hp0, r.t, 2 b; iii, MeNHOHL.HCI, CsHsN, r.t., 17 h: iv, PhMe, reflux, 17h; v,
Ac20, DMAP, CsHsN; vi, PAOH)/C, Ha, MeOH; vii, Mel, K2COs3, THF, r.t., 30 b; viii, DMSO, (COCI);, CH2Cly, -78 °C, 50
min, then EtaN, -78 °C tor.t; ix, NaClOz, HaO9, NaHoPOy4, MeCN, r.t,, 1 h; x, K2COs, MeOH-H20, r.t.; xi, TFA-H20,rt., 10k
xii, CHpNz, EtgO.

under Swem conditions, B-elimination occurred spontaneously to give the enal 11 in 79% yield, which could
be readily oxidized to acid 12 (67%) using NaClO7 and HyO2 under buffered conditions.12 Deacetylation to
give 13, foltowed by acidic hydrolysis, gave {-)-5-epi-shikimic acid (2) (80% overall), m.p. 155-156.5 °C, [alp
-57.6° (c 0.8, MeOH). Treatment of 13 with ethereal diazomethane gave the methyl ester 14 as an oil, [«]p
+26.8° (¢ 0.67, CHCls) [Lit., -23.99 (¢ 1.17, CHaCl2),52 -33.0° (¢ 0.67, CHCl3)3 for the enantiomer].
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Attempts to carry out an inversion of stereochemistry at C-4 of alcohol 7, in order to prepare shikimic
acid (1), were unsuccessful under a variety of conditions. Other workers have reported that racemic methyl
ester 14 can be converted into its C-5 epimer, but the procedure was indirect and low yielding.5¢ We thus
investigated a modified route as shown in Scheme 2, in which the alternative stercochemistry appropriate for
shikimic acid (1) was incorporated at an early stage.
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Scheme 2. i, allyl MgCl, THF, -78 °C, 3 b; ii, DIBAL, PhMe, -78 °C, 3 h; iii, TBAF, THF; iv, NalO4, Ho0, rt., 2 b; v,
MeNHOH.HCI, CsHsN, r.t, 20 h; vi, PhMe, reflux, 18 h; vii, AcO, DMAP, CsHsN; viii, PA(OH)2/C, Ha (2 atm.), MeOH; ix,
Mel, K3CO3, THF, r.t., 30 h; x, DMSO, (COCl)2, CHzCla, -78 °C, 55 min, then E3N, -78 °C tor.t; xi, NaClOa, H303, NaHzPOy,
MeCN, rt., 1 h; xii, KCOs, MeOH-H20, r.t.; xiii, TFA-H20, r.L.

The D-ribonolactone derivative 18, accessible either from 3 by sequential silylation and oxidation, or
from D-ribonolactone,!3 was treated with allylmagnesium chloride at low temperatures to give the lactol 16
(80%) as an anomeric mixture. Reduction of 16 with DIBAL gave a single diol 17 (88%) which was different
from that obtained by selective silylation of 4. The stereoselectivity can again be rationalized either by the
Felkin-Anh model, or via a chelated transition state similar to A (R = allyl, Nu = H). Desilylation of 17,
followed by periodate cleavage, gave the hemiacetals 18 in high yield. Treatment with MeNHOH.HCI in
pyridine, followed by heating of the crude nitrone in toluene, led to a single isoxazolidine 19 (95%), which was
acetylated to give 20. The stercochemistry of 20 followed from !H-nmr data,!4 which supported a
conformation as indicated in C. Further manipulation as in the previous Scheme led to the aldehyde 2114 (57%
overall). Oxidation with NaCl02-H202, deacetylation, and acid hydrolysis then gave (72% overall) (-)-
shikimic acid (1), [o]p-175.49 (¢ 0.59, H20) [Lit.3 -179.7° (c 4, H,0)].
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