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(-)-Shikimic acid (1) is a hey biosynthetic in- which gives its name to the pathway by which the 

aromatic aminoacids and a wide range of secondary metaholites are formed in living systemsI The 

biochemical significance of 1 has led to much interest in its chemical synthesis,l-2 and, following an early 

synthesis of the (-)-emmtiomer 1 f&m Darsbinose.3 a number of other reports have appear& on the conversion 
of sugars to (-)-l-4 Here we report new direct routes hodi to (-)-1 and to the pwviously unrtported (-)-5-e@ 

shikimic acid (2)s from D-rlbose, involving intramolecular tUrone cycloaddition (INC) reactions6 to establish 

the carbocyclic ring.’ 

We have previously shown that reaction of 23o-isopropylidene-D-ribose (3) with didylzinc gives the 

D-do-trio1 4 (Scheme 1) with high diastereoselectivity,g a result which can he rationalized by reaction either 

via a Felkin-Anh transition state, or via the cyclic chelate A (R = II, Nu = sIlyl).p Periodate cleavage of 4 gave 

58 in quantitative yield, and on trtatment with MeNHOHXCl in pyridine, hone 6 was isolated in 98% yield 

after chromatography. Thermolysis of 6 (toluene, mflux, 18 h) gave the cycloadduct 710 (67%) with only very 
minor traces of an isomer. The stereochemistry of 7 follows from *I-i-nmr studies on 7 and its O-acetyl 
derivative g-10 Strong n.0.e. effects were observed for 8 between H-l and H-6 and between H-6 and H-7a, 

implying a &-ring junction; n.0.e. effects between H-7@ and H-4, together with coupling constant data10 (e.g. 

for 7,51,6 9.0 Hz, J45o 9.5 Hz) indicate a conformation for 7 snd 8 as indicated in B-11 
Hydrogenation of 8 over Pearlman’s catalyst gave the aminoalcohol 9 in quantitative yield, and this could be 
converted (87%) to the quaternary salt lOlo by ueatment with IvIeI-K&Q in THF. When 10 was oxidized 
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SCheII’It! 1. i, diallylzinc, Et& 0% ii, NdO4, H20,r.t.. 2h; iii, WNHOHHCI, C@#. r.t., 17 a: iv, PhMe. tiux. 17h: v, 
Ac20, DMAP. QHJN; vi. Pd@H)& Hz, MeOHi vii, I’&l.K~, TEE, r.~, 30 b; viii, DMSO, (COCI~, CH$l2. -78 “C, 50 
min, then Et*, -78 DC to r-t.: ix, NaCl@, H;?oz. NaH2po4, MeCN, ct.. 1 b; x, IQ&Z@, MeofI-Hfl, ct.; xi, PA-H&k rd., 10 h; 
xii, CH2N2, Et20. 

under Swem conditions, iY&elimination occurred spontaneously to give the enal 11 in 79% yield, which could 

be readily oxidized to acid l2 (67%) using NaCl@ and Hz02 under buffered conditions.12 Deacetylation to 
give 13, folkowed by acidic by~lysis, gave ~-)-5~~j-sh~~c acid (2) (8@% overall), m,p. 155-156.5 Oc, [a]D 

-57.60 (c 0.8, MeOH). Treatment of 13 with ethereal diazomethane gave the methyl ester 14 as an oil, [a]~ 

+26-P (c 0.67, CHCl3) (Lit., -23.90 (c 1.17, U-&C&), sa -33.00 (c 0.67, CHCl3)5b for the enantiomer]. 
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Attempts to carry out an inversion of stereochemistry at C-4 of alwho17, in order to prepare shikimic 

acid (1). were unsuccessful under a variety of conditions. Other workers have @ that rawmic methyl 

ester 14 can be converted into its C-5 epimer, but the pmcedure was indirect and low yielding.5c We thus 

investigated a modified route as shown in Scheme 2, in which the alternative stuwchemisuy appropriate for 

shikimic acid (1) was incorporated at an early stage. 

Ihe 21 A 19,R=H -Jvii 18 
2O,R=Ac 

Scheme 2. i. ally1 MgCl. THF, -78 V. 3 h; ii, DIBAL. PhMe. -78 OC. 3 h; iii, TBAF, THE$ iv. Na104, H20, r.t., 2 h; v, 
MeNHOH.HCl. CsHsN. r.t. 20 h; vi. PItMe. reflex, 18 h: vii. Ac20. DMAP. CsHfl: viii, Pd(OH)fl. H2 (2 arm.). MeOH ix. 
MeI. K2CC3. ‘I’HF. r.t, 30 h; x. DMSO. (CCC& CH2Cl2, -78 Oc. 55 min. then Et3N. -78 Oc tu IL; xi, NaCle. H202. IW@Q4. 
MeCN, r.t. 1 h; xii. Km, MeOH-H20, r.t.; xiii, ‘IPA-H20, r.t. 

The D-ribonolactone derivative 15, accessible either from 3 by sequential silylation and oxidation, or 

from D-ribonolactone,13 was treated with allylmagnesium chloride at low temperatures to give the lactol 16 

(80%) as an anomeric mixture. Reduction of 16 with DJBAL gave a single diol17 (88%) which was different 

from that obtained by selective silylation of 4. The stereoselectivity can again be rationalized either by the 

Felkin-Anh model, or via a chelated transition state similar to A (R = ally& Nu = H). Desilylation of 17, 

followed by periodate cleavage, gave the hemiacetals 18 in high yield. Treatment with MeNHOH.HCl in 

pyridine, followed by heating of the crude nitrone in toluene, led to a single isox~lidine 19 (95%). which was 

acetylated to give 20. The stereochemistry of 20 followed from ‘H-nmr data.14 which supported a 

conformation as indicated in C. Further manipulation as in the previous Scheme led to the aldehyde 2114 (57% 

overall). Oxidation with NaC102-H202. deacetylation, and acid hydrolysis then gave (72% overall) (-)- 

shikimic acid (I), [o]D-175.4O (c 0.59, H20) [Lit.3 -179.7O (c 4, H20)]. 
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